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Figure 1  Graphical interpretation of the first step of Euler’s method  
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How to write Ordinary Differential 
Equation 

Example  
  

  50,3.12   yey
dx

dy x

is rewritten as 
  

  50,23.1   yye
dx

dy x

In this case 
  

  yeyxf x 23.1,  

How does one write a first order differential equation in the form of 

 yxf
dx

dy
,



4 

Example 

A ball at 1200K is allowed to cool down in air at an ambient temperature 

of 300K.  Assuming heat is lost only due to radiation, the differential 

equation for the temperature of the ball is given by  

  

    K
dt

d
12000,1081102067.2 8412   



   

Find the temperature at  480t seconds using Euler’s method.  Assume a step size of   

240h  seconds. 
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Solution 
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Step 1:       

1  is the approximate temperature at 
  

240240001  httt

  K09.106240 1 

 8412 1081102067.2 
 

dt

d

   8412 1081102067.2,  tf
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Solution Cont 

For  09.106,240,1 11  ti

 

 

  
 

K

f

htf

32.110

240017595.009.106

240108109.106102067.209.106

24009.106,24009.106

,

8412

1112















Step 2:      

2  is the approximate temperature at  48024024012  httt

  K32.110480 2 
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Solution Cont 

The exact solution of the ordinary differential equation is given by the 
solution of a non-linear equation as 

  9282.21022067.000333.0tan8519.1
300

300
ln92593.0 31 



  t




The solution to this nonlinear equation at t=480 seconds is 

K57.647)480( 
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Comparison of Exact and 
Numerical Solutions 

Figure 3.  Comparing exact and Euler’s method  
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Step, h (480) Et |єt|% 
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Effect of step size 

Table 1.  Temperature at 480 seconds as a function of step size, h 

K57.647)480(  (exact) 
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Comparison with exact results 
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Figure 4.  Comparison of Euler’s method with exact solution for different step sizes  
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Effects of step size on Euler’s 
Method 
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Figure 5.  Effect of step size in Euler’s method.  
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Errors in Euler’s Method 

It can be seen that Euler’s method has large errors.  This can be illustrated using 
Taylor series. 
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As you can see the first two terms of the Taylor series 

 hyxfyy iiii ,1 

The true error in the approximation is given by 
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are the Euler’s method. 
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Additional Resources 

For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit 

 
http://numericalmethods.eng.usf.edu/topics/euler_meth
od.html 
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http://numericalmethods.eng.usf.edu/topics/euler_method.html
http://numericalmethods.eng.usf.edu/topics/euler_method.html


THE END 
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